Optimization of a Regional Marine Environment Mobile Observation Network Based on Deep Reinforcement Learning

نویسندگان

چکیده

The observation path planning of an ocean mobile network is important part the system. With aim developing a traditional algorithm to solve network, complex objective function needs be constructed, and improved deep reinforcement learning proposed. does not need establish function. agent samples marine environment information by exploring receiving feedback from environment. Focusing on real-time dynamic variability environment, our experiment shows that adding bidirectional recurrency Deep Q-network allows better estimate underlying system state. Compared with results existing algorithms, can effectively improve sampling efficiency platform. To prediction accuracy numerical system, we conduct experiments single platform, double five platforms. experimental show increasing number platforms but when exceeds 2, will accuracy, there certain degree decline. In addition, in multi-platform experiment, compared unimproved algorithm, proposed than algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Performance Optimization in Mobile-Edge Computing via Deep Reinforcement Learning

To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is emerging as a promising paradigm by providing computing capabilities within radio access networks in close proximity. Nevertheless, the design of computation offloading policies for a MEC system remains challenging. Specifically, whether to execute an arriving computation task at local mobile dev...

متن کامل

Vision-based Deep Reinforcement Learning

Recently, Google Deepmind showcased how Deep learning can be used in conjunction with existing Reinforcement Learning (RL) techniques to play Atari games[11], beat a world-class player [14] in the game of Go and solve complicated riddles [3]. Deep learning has been shown to be successful in extracting useful, nonlinear features from high-dimensional media such as images, text, video and audio [...

متن کامل

On-line Building Energy Optimization using Deep Reinforcement Learning

Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits of using Deep Reinforcement Learning, a hybrid...

متن کامل

Dueling Network Architectures for Deep Reinforcement Learning

In recent years there have been many successes of using deep representations in reinforcement learning. Still, many of these applications use conventional architectures, such as convolutional networks, LSTMs, or auto-encoders. In this paper, we present a new neural network architecture for model-free reinforcement learning inspired by advantage learning. Our dueling architecture represents two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Marine Science and Engineering

سال: 2023

ISSN: ['2077-1312']

DOI: https://doi.org/10.3390/jmse11010208